Monday, 9 October 2017

POLONIUM ORES

Listing description
Polonium (pronounced /pɵˈloʊniəm/, po-LOH-nee-əm) is a chemical element with the symbol Po and atomic number 84, discovered in 1898 by Marie Skłodowska-Curie and Pierre Curie. A rare and highly radioactive metalloid,[1] polonium is chemically similar to bismuth[2] and tellurium, and it occurs in uranium ores. Polonium has been studied for possible use in heating spacecraft. It is unstable; all isotopes of polonium are radioactive.
Detailed descrtption
Characteristics
Solid state form
Polonium is a radioactive element that exists in two metallic allotropes. The alpha form has a simple cubic crystal structure with an edge length of 335.2 picometres; the beta form is rhombohedral. The structure of polonium has been characterized by X-ray diffraction  and electron diffraction.
210Po (in common with 238Pu) has the ability to become airborne with ease: if a sample is heated in air to 55 °C (131 °F), 50% of it is vaporized in 45 hours, even though the melting point of polonium is 254 °C (489 °F) and its boiling point is 962 °C (1763 °F). More than one hypothesis exists for how polonium does this; one suggestion is that small clusters of polonium atoms are spalled off by the alpha decay.
Detection
Gamma counting
By means of radiometric methods such as gamma spectroscopy (or a method using a chemical separation followed by an activity measurement with a non-energy-dispersive counter), it is possible to measure the concentrations of radioisotopes and to distinguish one from another. In practice, background noise would be present and depending on the detector, the line width would be larger which would make it harder to identify and measure the isotope. In biological/medical work it is common to use the natural 40K present in all tissues/body fluids as a check of the equipment and as an internal standard.
Alpha counting
The best way to test for (and measure) many alpha emitters is to use alpha-particle spectroscopy as it is common to place a drop of the test solution on a metal disk which is then dried out to give a uniform coating on the disk. This is then used as the test sample. If the thickness of the layer formed on the disk is too thick then the lines of the spectrum are broadened, this is because some of the energy of the alpha particles is lost during their movement through the layer of active material. An alternative method is to use internal liquid scintillation where the sample is mixed with a scintillation cocktail. When the light emitted is then counted, some machines will record the amount of light energy per radioactive decay event.
Occurrence and production
Polonium is a very rare element in nature because of the short half-life of all its isotopes. It is found in uranium ores at about 100 micrograms per metric ton (1 part in 1010), which is approximately 0.2% of the abundance of radium. The amounts in the Earth's crust are not harmful. Polonium has been found in tobacco smoke from tobacco leaves grown with phosphate fertilizers.
Neutron capture
Synthesis by (n,γ) reaction
In 1934 an experiment showed that when natural 209Bi is bombarded with neutrons, 210Bi is created, which then decays to 210Po via β decay. The final purification is done pyrochemically followed by liquid-liquid extraction techniques. Polonium may now be made in milligram amounts in this procedure which uses high neutron fluxes found in nuclear reactors. Only about 100 grams are produced each year, practically all of it in Russia, making polonium exceedingly rare.
Proton capture
Synthesis by (p,n) and (p,2n) reactions
It has been found that the longer-lived isotopes of polonium can be formed by proton bombardment of bismuth using a cyclotron. Other more neutron rich isotopes can be formed by the irradiation of platinum with carbon nuclei.
Applications
When it is mixed or alloyed with beryllium, polonium can be a neutron source: beryllium releases a neutron upon absorption of an alpha particle that is supplied by 210Po. It has been used in this capacity as a neutron trigger or initiator for nuclear weapons. However, a license is needed to own and operate this form of neutron source. Other uses include the following.
  • Devices that eliminate static charges in textile mills and other places. However, beta particle sources are more commonly used and are less dangerous. A non-radioactive alternative is to use a high-voltage DC power supply to ionise air positively or negatively as required.
  • 210Po can be used as an atomic heat source to power radioisotope thermoelectric generators via thermoelectric materials.
  • Because of its very high toxicity, polonium can be used as a poison (see, for example, Alexander Litvinenko poisoning).
  • Polonium is also used to eliminate dust on film.
Toxicity
Overview
By mass, polonium-210 is around 250,000 times more toxic than hydrogen cyanide (the actual LD50 for 210Po is about 1 microgram for an 80 kg person (see below) compared with about 250 milligrams for hydrogen cyanide). The main hazard is its intense radioactivity (as an alpha emitter), which makes it very difficult to handle safely: one gram of Po will self-heat to a temperature of around 500 °C (932 °F). Even in microgram amounts, handling 210Po is extremely dangerous, requiring specialized equipment and strict handling procedures. Alpha particles emitted by polonium will damage organic tissue easily if polonium is ingested, inhaled, or absorbed, although they do not penetrate the epidermis and hence are not hazardous if the polonium is outside the body.
Acute effects
The median lethal dose (LD50) for acute radiation exposure is generally about 4.5 Sv. The committed effective dose equivalent 210Po is 0.51 µSv/Bq if ingested, and 2.5 µSv/Bq if inhaled. Since 210Po has an activity of 166 TBq per gram (4,500 Ci/g)[35] (1 gram produces 166×1012 decays per second), a fatal 4.5 Sv (J/kg) dose can be caused by ingesting 8.8 MBq (238 microcuries, µCi), about 50 nanograms (ng), or inhaling 1.8 MBq (48 µCi), about 10 ng. One gram of 210Po could thus in theory poison 20 million people of whom 10 million would die. The actual toxicity of 210Po is lower than these estimates, because radiation exposure that is spread out over several weeks (the biological half-life of polonium in humans is 30 to 50 days) is somewhat less damaging than an instantaneous dose. It has been estimated that a median lethal dose of 210Po is 0.015 GBq (0.4 mCi), or 0.089 micrograms, still an extremely small amount.
Long term (chronic) effects
In addition to the acute effects, radiation exposure (both internal and external) carries a long-term risk of death from cancer of 5–10% per Sv. The general population is exposed to small amounts of polonium as a radon daughter in indoor air; the isotopes 214Po and 218Po are thought to cause the majority of the estimated 15,000-22,000 lung cancer deaths in the US every year that have been attributed to indoor radon. Tobacco smoking causes additional exposure to polonium.
Regulatory exposure limits
The maximum allowable body burden for ingested 210Po is only 1.1 kBq (30 nCi), which is equivalent to a particle massing only 6.8 picograms. The maximum permissible workplace concentration of airborne 210Po is about 10 Bq/m3 (3 × 10−10 µCi/cm³). The target organs for polonium in humans are the spleen and liver. As the spleen (150 g) and the liver (1.3 to 3 kg) are much smaller than the rest of the body, if the polonium is concentrated in these vital organs, it is a greater threat to life than the dose which would be suffered (on average) by the whole body if it were spread evenly throughout the body, in the same way as caesium or tritium (as T2O).
210Po is widely used in industry, and readily available with little regulation or restriction. In the US, a tracking system run by the Nuclear Regulatory Commission will be implemented in 2007 to register purchases of more than 16 curies (590 GBq) of polonium 210 (enough to make up 5,000 lethal doses). The IAEA "is said to be considering tighter regulations... There is talk that it might tighten the polonium reporting requirement by a factor of 10, to 1.6 curies (59 GBq)."
Treatment
It has been suggested that chelation agents such as British Anti-Lewisite (dimercaprol) can be used to decontaminate humans. In one experiment, rats were given a fatal dose of 1.45 MBq/kg (8.7 ng/kg) of 210Po; all untreated rats were dead after 44 days, but 90% of the rats treated with the chelation agent HOEtTTC remained alive after 5 months.
Commercial products containing polonium
No nuclear authority has asserted that a commercial product was a likely source for the poisoning of Litvinenko. However, as Prof. Peter D. Zimmerman says, "Polonium 210 is surprisingly common. ...Polonium sources with about 10 percent of a lethal dose are readily available—even in a product sold on Amazon.com."
Potentially lethal amounts of polonium are present in anti-static brushes sold to photographers Many of the devices are available by mail order. General Electric markets a static eliminator module with 500 µCi (20 MBq), roughly 2.5 times the lethal dose of 210Po if 100%-ingested, for US$79; Staticmaster sells replacement units with the same amount (500 µCi) of 210Po for US$36. In USA, the devices with no more than 500 µCi of (sealed) 210Po per unit can be bought in any amount under a "general license" which means that a buyer need not be registered by any authorities: the general license "is effective without the filing of an application with the Commission or the issuance of a licensing document to a particular person."

PRICE



$12,900/KG OR $5,863.63/IB


 For more information:

mobile: +2348039721941

contact person: emeaba uche

e-mail: emeabau@yahoo.com



·         

PROTACTINIUM ORE

Listing description
Protactinium (pronounced /ˌproʊtækˈtɪniəm/, PROH-tak-TIN-ee-əm) is a chemical element with the symbol Pa and atomic number 91. Its longest-lived and most abundant naturally occurring isotope by far, Pa-231, is a decay product of uranium-235 (U-235), and it has a half-life of 32,760 years. Much smaller trace amounts of the short-lived metastable isotope Pa-234m occur as decay products of uranium-238 (U-238). Pa-233 results from the decay of thorium-233 as part of the chain of events used to produce uranium-233 by neutron irradiation of thorium-232.
Detailed description

Protactinium (pronounced /ˌproʊtækˈtɪniəm/, PROH-tak-TIN-ee-əm) is a chemical element with the symbol Pa and atomic number 91. Its longest-lived and most abundant naturally occurring isotope by far, Pa-231, is a decay product of uranium-235 (U-235), and it has a half-life of 32,760 years. Much smaller trace amounts of the short-lived metastable isotope Pa-234m occur as decay products of uranium-238 (U-238). Pa-233 results from the decay of thorium-233 as part of the chain of events used to produce uranium-233 by neutron irradiation of thorium-232.

Characteristics
Protactinium is a metallic element that belongs to the actinide group, with a bright metallic luster that it retains for some time in contact with air.[2][3] Protactinium is superconductive at temperatures below 1.4 K.[4]
Applications
Because of its scarcity, high radioactivity and high toxicity, there are currently no uses for protactinium outside of scientific research.
Protactinium-231 is formed by the alpha decay of U-235 followed by beta decay of thorium-231. The physicist Walter Seifritz once estimated that protactinium might possibly be used to build a nuclear weapon with a critical mass of 750±180 kg. This possibility (of a chain reaction) has been ruled out by other nuclear physicists since then.
The ratio of protactinium-231 to thorium-230 in ocean sediments has also been used in paleoceanography to reconstruct the movements of North Atlantic water bodies during the last melting of Ice Age glaciers.[5]
History
In 1890, Mendeleev predicted the existence of an element between thorium and uranium. Due to the fact that the actinide element group was unknown uranium was positioned below tungsten and thorium below zirconium leaving the space below tantalum empty. Until the 1950s periodic tables were published with this structure.[6] For a long time chemists searched for eka-tantalum as an element with similar chemical properties as tantalum, making a discovery of protactinium nearly impossible.
In 1900, William Crookes isolated protactinium as a radioactive material from uranium; however, he did not identify it as a new element.[7]
Protactinium was first identified in 1913, when Kasimir Fajans and Oswald Helmuth Göhring encountered the short-lived isotope Pa-234m (half-life of about 1.17 minutes), during their studies of the decay chains of uranium-238 (U-238). They gave the new element the name brevium (from the Latin word, brevis, meaning brief or short);[8][9] the name was changed to protoactinium (from Greek πρῶτος + ἀκτίς meaning "first beam element") in 1918 when two groups of scientists (lead by Otto Hahn and Lise Meitner of Germany; and Frederick Soddy and John Cranston of Great Britain) independently discovered Pa-231. The name was shortened to Protactinium in 1949.
Aristid von Grosse produced 2 mg of Pa2O5 in 1927,[10] and in 1934 performed the first isolation of elemental protactinium from 0.1 mg of Pa2O5 using the iodide process: converting the oxide to an iodide and then reducing it in a vacuum with an electrically heated metal filament:
2 PaI5 → 2 Pa + 5 I2
In 1961, the British Atomic Energy Authority (UKAEA) was able to produce 125 grams of 99.9% pure protactinium by processing 60 tons of waste material in a 12-stage process. For many years, this was the world's only significant supply of protactinium.[7]
Occurrence
Protactinium occurs in pitchblende to the extent of about 3.0 part 231Pa per million parts of ore.[7] name Some ores from the Democratic Republic of the Congo have about 3.0 ppm. Protactinium is one of the rarest and most expensive naturally occurring elements.[2]
Compounds
Examples of protactinium compounds:
  • Fluorides: protactinium(IV) fluoride PaF4,
    protactinium(V) fluoride PaF5
  • Chlorides: protactinium(IV) chloride PaCl4,
    protactinium(V) chloride PaCl5
  • Bromides: protactinium(IV) bromide PaBr4,
    protactinium(V) bromide PaBr5
  • Iodides: protactinium(III) iodide PaI3,
    protactinium(IV) iodide PaI4,
    protactinium(V) iodide PaI5
  • Oxides: protactinium(II) oxide PaO,
    protactinium(IV) oxide PaO2,
    protactinium(V) oxide Pa2O5
Isotopes
Twenty-nine radioisotopes of protactinium have been discovered, with the most stable being Pa-231 with a half life of 32760 years, Pa-233 with a half-life of 27.0 days, and Pa-230 with a half-life of 17.4 days. All of the remaining radioactive isotopes have half-lives that are less than 1.60 days, and the majority of these have half-lives that are less than 1.8 seconds. Protactinium also has two meta states, Pa-217m (half-life 1.2 milliseconds) and Pa-234m (half-life 1.17 minutes).
The primary decay mode for isotopes of protactinium lighter than (and including) the most stable isotope Pa-231 (i.e., Pa-212 to Pa-231) is alpha decay and the primary mode for the heavier isotopes (i.e., Pa-232 to Pa-240) is beta decay. The primary decay products of isotopes of protactinium lighter than (and including) Pa-231 are actinium isotopes and the primary decay products for the heavier isotopes of protactinium are uranium isotopes.
Precautions
Protactinium is both toxic and highly radioactive. It requires precautions similar to those used when handling plutonium.
Uranium (pronounced /jʊˈreɪniəm/ yoo-RAY-nee-əm) is a silvery-white metallic chemical element in the actinide series of the periodic table with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. The uranium nucleus binds between 141 and 146 neutrons, establishing six isotopes, the most common of which are U-238 (146 neutrons) and U-235 (143 neutrons). All isotopes are unstable and uranium is weakly radioactive. Uranium has the second highest atomic weight of the naturally occurring elements, lighter only than plutonium-244.[3] Its density is about 70% higher than that of lead, but not as dense as gold or tungsten. It occurs naturally in low concentrations of a few parts per million in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite.
In nature, uranium is found as uranium-238 (99.284%), uranium-235 (0.711%),[4] and a very small amount of uranium-234 (0.0058%). Uranium decays slowly by emitting an alpha particle. The half-life of uranium-238 is about 4.47 billion years and that of uranium-235 is 704 million years,[5] making them useful in dating the age of the Earth.
Many contemporary uses of uranium exploit its unique nuclear properties. Uranium-235 has the distinction of being the only naturally occurring fissile isotope. Uranium-238 is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239 in a nuclear reactor. Another fissile isotope, uranium-233, can be produced from natural thorium and is also important in nuclear technology. While uranium-238 has a small probability for spontaneous fission or even induced fission with fast neutrons, uranium-235 and to a lesser degree uranium-233 have a much higher fission cross-section for slow neutrons. In sufficient concentration, these isotopes maintain a sustained nuclear chain reaction. This generates the heat in nuclear power reactors, and produces the fissile material for nuclear weapons. Depleted uranium (U-238) is used in kinetic energy penetrators and armor plating.[6]
Uranium is used as a colorant in uranium glass, producing orange-red to lemon yellow hues. It was also used for tinting and shading in early photography. The 1789 discovery of uranium in the mineral pitchblende is credited to Martin Heinrich Klaproth, who named the new element after the planet Uranus. Eugène-Melchior Péligot was the first person to isolate the metal and its radioactive properties were uncovered in 1896 by Antoine Becquerel. Research by Enrico Fermi and others starting in 1934 led to its use as a fuel in the nuclear power industry and in Little Boy, the first nuclear weapon used in war. An ensuing arms race during the Cold War between the United States and the Soviet Union produced tens of thousands of nuclear weapons that used enriched uranium and uranium-derived plutonium. The security of those weapons and their fissile material following the breakup of the Soviet Union in 1991 is an ongoing concern for public health and safety.

PRICE

$12,900/KG OR $5,863.63/IB


For more information:

mobile: +2348039721941

contact person: emeaba uche

e-mail: emeabau@yahoo.com