Monday, 9 October 2017

URANIUM ORE

Listing description
Uranium (pronounced /jʊˈreɪniəm/ yoo-RAY-nee-əm) is a silvery-white metallic chemical element in the actinide series of the periodic table with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. The uranium nucleus binds between 141 and 146 neutrons, establishing six isotopes, the most common of which are U-238 (146 neutrons) and U-235 (143 neutrons). All isotopes are unstable and uranium is weakly radioactive
Detailed description
Uranium has the second highest atomic weight of the naturally occurring elements, lighter only than plutonium-244.[3] Its density is about 70% higher than that of lead, but not as dense as gold or tungsten. It occurs naturally in low concentrations of a few parts per million in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite.
In nature, uranium is found as uranium-238 (99.284%), uranium-235 (0.711%),[4] and a very small amount of uranium-234 (0.0058%). Uranium decays slowly by emitting an alpha particle. The half-life of uranium-238 is about 4.47 billion years and that of uranium-235 is 704 million years,[5] making them useful in dating the age of the Earth.
Many contemporary uses of uranium exploit its unique nuclear properties. Uranium-235 has the distinction of being the only naturally occurring fissile isotope. Uranium-238 is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239 in a nuclear reactor. Another fissile isotope, uranium-233, can be produced from natural thorium and is also important in nuclear technology. While uranium-238 has a small probability for spontaneous fission or even induced fission with fast neutrons, uranium-235 and to a lesser degree uranium-233 have a much higher fission cross-section for slow neutrons. In sufficient concentration, these isotopes maintain a sustained nuclear chain reaction. This generates the heat in nuclear power reactors, and produces the fissile material for nuclear weapons. Depleted uranium (U-238) is used in kinetic energy penetrators and armor plating.[6]
Uranium is used as a colorant in uranium glass, producing orange-red to lemon yellow hues. It was also used for tinting and shading in early photography. The 1789 discovery of uranium in the mineral pitchblende is credited to Martin Heinrich Klaproth, who named the new element after the planet Uranus. Eugène-Melchior Péligot was the first person to isolate the metal and its radioactive properties were uncovered in 1896 by Antoine Becquerel. Research by Enrico Fermi and others starting in 1934 led to its use as a fuel in the nuclear power industry and in Little Boy, the first nuclear weapon used in war. An ensuing arms race during the Cold War between the United States and the Soviet Union produced tens of thousands of nuclear weapons that used enriched uranium and uranium-derived plutonium. The security of those weapons and their fissile material following the breakup of the Soviet Union in 1991 is an ongoing concern for public health and safety.[7]

Characteristics
When refined, uranium is a silvery white, weakly radioactive metal, which is slightly softer than steel,[8] strongly electropositive and a poor electrical conductor.[9] It is malleable, ductile, and slightly paramagnetic.[8] Uranium metal has very high density, being approximately 70% denser than lead, but slightly less dense than gold.
Uranium metal reacts with almost all nonmetallic elements and their compounds, with reactivity increasing with temperature.[10] Hydrochloric and nitric acids dissolve uranium, but nonoxidizing acids attack the element very slowly.[9] When finely divided, it can react with cold water; in air, uranium metal becomes coated with a dark layer of uranium oxide.[8] Uranium in ores is extracted chemically and converted into uranium dioxide or other chemical forms usable in industry.
Uranium-235 was the first isotope that was found to be fissile. Other naturally occurring isotopes are fissionable, but not fissile. Upon bombardment with slow neutrons, its uranium-235 isotope will most of the time divide into two smaller nuclei, releasing nuclear binding energy and more neutrons. If these neutrons are absorbed by other uranium-235 nuclei, a nuclear chain reaction occurs that may be explosive unless the reaction is slowed by a neutron moderator, absorbing them. As little as 15 lb (7 kg) of uranium-235 can be used to make an atomic bomb.[11] The first nuclear bomb used in war, Little Boy, relied on uranium fission, while the very first nuclear explosive (The gadget) and the bomb that destroyed Nagasaki (Fat Man) were plutonium bombs.
Uranium metal has three allotropic forms:[12]
Applications
Military
The major application of uranium in the military sector is in high-density penetrators. This ammunition consists of depleted uranium (DU) alloyed with 1–2% other elements. At high impact speed, the density, hardness, and flammability of the projectile enable destruction of heavily armored targets. Tank armor and other, removable vehicle armor are also hardened with depleted uranium plates. The use of DU became politically and environmentally contentious after the use of DU munitions by the US, UK and other countries during wars in the Persian Gulf and the Balkans raised questions of uranium compounds left in the soil (see Gulf War Syndrome).[11]
Depleted uranium is also used as a shielding material in some containers used to store and transport radioactive materials. While the metal itself is radioactive, its high density makes it more effective than lead in halting radiation from strong sources such as radium.[9] Other uses of DU include counterweights for aircraft control surfaces, as ballast for missile re-entry vehicles and as a shielding material.[8] Due to its high density, this material is found in inertial guidance systems and in gyroscopic compasses.[8] DU is preferred over similarly dense metals due to its ability to be easily machined and cast as well as its relatively low cost.[13] Counter to popular belief, the main risk of exposure to DU is chemical poisoning by uranium oxide rather than radioactivity (uranium being only a weak alpha emitter).
Civilian
The main use of uranium in the civilian sector is to fuel nuclear power plants. One kilogram of uranium-235 can theoretically produce about 80 terajoules of energy (8 × 1013 joules), assuming complete fission; as much energy as 3000 tonnes of coal.[6]
Commercial nuclear power plants use fuel that is typically enriched to around 3% uranium-235.[6] The CANDU reactor is the only commercial reactor capable of using unenriched uranium fuel. Fuel used for United States Navy reactors is typically highly enriched in uranium-235 (the exact values are classified). In a breeder reactor, uranium-238 can also be converted into plutonium through the following reaction:[8] 238U (n, gamma) → 239U -(beta) → 239Np -(beta) → 239Pu.
One of the major problem areas in the use of uranium nuclear fuel is the disposal of nuclear waste. Traditional nuclear reactors consume only 1-2% of uranium fuel.[citation needed]
Before the discovery of radioactivity, uranium was primarily used in small amounts for yellow glass and pottery glazes, such as uranium glass and in Fiestaware.
The discovery and isolation of radium in uranium ore (pitchblende) by Marie Curie sparked the development of uranium mining to extract the radium, which was used to make glow-in-the-dark paints for clock and aircraft dials.[15] This left a prodigious quantity of uranium as a waste product, since it takes three metric tons of uranium to extract one gram of radium. This waste product was diverted to the glazing industry, making uranium glazes very inexpensive and abundant. Besides the pottery glazes, uranium tile glazes accounted for the bulk of the use, including common bathroom and kitchen tiles which can be produced in green, yellow, mauve, black, blue, red and other colors.
History
Prehistoric naturally occurring fission
In 1972 French physicist Francis Perrin discovered fifteen ancient and no longer active natural nuclear fission reactors in three separate ore deposits at the Oklo mine in Gabon, West Africa, collectively known as the Oklo Fossil Reactors. The ore deposit is 1.7 billion years old; then, uranium-235 constituted about three percent of the total uranium on Earth.[16] This is high enough to permit a sustained nuclear fission chain reaction to occur, provided other supporting conditions exist. The capacity of the surrounding sediment to contain the nuclear waste products has been cited by the U.S. federal government as supporting evidence for the feasibility to store spent nuclear fuel at the Yucca Mountain nuclear waste repository.[16]
Pre-discovery use
The use of uranium in its natural oxide form dates back to at least the year 79 CE, when it was used to add a yellow color to ceramic glazes.[8] Yellow glass with 1% uranium oxide was found in a Roman villa on Cape Posillipo in the Bay of Naples, Italy by R. T. Gunther of the University of Oxford in 1912.[17] Starting in the late Middle Ages, pitchblende was extracted from the Habsburg silver mines in Joachimsthal, Bohemia (now Jáchymov in the Czech Republic) and was used as a coloring agent in the local glassmaking industry.[18] In the early 19th century, the world's only known sources of uranium ore were these mines.
Discovery
The discovery of the element is credited to the German chemist Martin Heinrich Klaproth. While he was working in his experimental laboratory in Berlin in 1789, Klaproth was able to precipitate a yellow compound (likely sodium diuranate) by dissolving pitchblende in nitric acid and neutralizing the solution with sodium hydroxide.[18] Klaproth assumed the yellow substance was the oxide of a yet-undiscovered element and heated it with charcoal to obtain a black powder, which he thought was the newly discovered metal itself (in fact, that powder was an oxide of uranium).[18][19] He named the newly discovered element after the planet Uranus, which had been discovered eight years earlier by William Herschel.[20]
In 1841, Eugène-Melchior Péligot, Professor of Analytical Chemistry at the Conservatoire National des Arts et Métiers (Central School of Arts and Manufactures) in Paris, isolated the first sample of uranium metal by heating uranium tetrachloride with potassium.[18][21] Uranium was not seen as being particularly dangerous during much of the 19th century, leading to the development of various uses for the element. One such use for the oxide was the aforementioned but no longer secret coloring of pottery and glass.
Fission research
A team led by Enrico Fermi in 1934 observed that bombarding uranium with neutrons produces the emission of beta rays (electrons or positrons from the elements produced; see beta particle).[23] The fission products were at first mistaken for new elements of atomic numbers 93 and 94, which the Dean of the Faculty of Rome, Orso Mario Corbino, christened ausonium and hesperium, respectively. The experiments leading to the discovery of uranium's ability to fission (break apart) into lighter elements and release binding energy were conducted by Otto Hahn and Fritz Strassmann in Hahn's laboratory in Berlin. Lise Meitner and her nephew, physicist Otto Robert Frisch, published the physical explanation in February 1939 and named the process 'nuclear fission'. Soon after, Fermi hypothesized that the fission of uranium might release enough neutrons to sustain a fission reaction. Confirmation of this hypothesis came in 1939, and later work found that on average about 2.5 neutrons are released by each fission of the rare uranium isotope uranium-235. Further work found that the far more common uranium-238 isotope can be transmuted into plutonium, which, like uranium-235, is also fissionable by thermal neutrons. These discoveries led numerous countries to begin working on the development of nuclear weapons and nuclear power.
  
PRICE


$12,900/KG OR $5,863.63/IB

For more information:

mobile: +2348039721941

contact person: emeaba uche

e-mail: emeabau@yahoo.com



No comments:

Post a Comment